首页> 外文OA文献 >ASP: Learning to Forget with Adaptive Synaptic Plasticity in Spiking Neural Networks
【2h】

ASP: Learning to Forget with Adaptive Synaptic Plasticity in Spiking Neural Networks

机译:asp:学习忘掉尖峰中的自适应突触可塑性   神经网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A fundamental feature of learning in animals is the "ability to forget" thatallows an organism to perceive, model and make decisions from disparate streamsof information and adapt to changing environments. Against this backdrop, wepresent a novel unsupervised learning mechanism ASP (Adaptive SynapticPlasticity) for improved recognition with Spiking Neural Networks (SNNs) forreal time on-line learning in a dynamic environment. We incorporate an adaptiveweight decay mechanism with the traditional Spike Timing Dependent Plasticity(STDP) learning to model adaptivity in SNNs. The leak rate of the synapticweights is modulated based on the temporal correlation between the spikingpatterns of the pre- and post-synaptic neurons. This mechanism helps in gradualforgetting of insignificant data while retaining significant, yet old,information. ASP, thus, maintains a balance between forgetting and immediatelearning to construct a stable-plastic self-adaptive SNN for continuouslychanging inputs. We demonstrate that the proposed learning methodologyaddresses catastrophic forgetting while yielding significantly improvedaccuracy over the conventional STDP learning method for digit recognitionapplications. Additionally, we observe that the proposed learning modelautomatically encodes selective attention towards relevant features in theinput data while eliminating the influence of background noise (or denoising)further improving the robustness of the ASP learning.
机译:在动物中学习的基本特征是“遗忘能力”,使生物体能够从不同的信息流中感知,建模和做出决策,并适应不断变化的环境。在此背景下,我们提出了一种新颖的无监督学习机制ASP(自适应突触可塑性),用于利用尖峰神经网络(SNN)改善识别能力,以便在动态环境中进行实时在线学习。我们将自适应权重衰减机制与传统的Spike时序相关可塑性(STDP)学习相结合,以对SNN中的适应性进行建模。突触权重的泄漏率是基于突触前和突触后神经元的突触模式之间的时间相关性来调节的。这种机制有助于逐渐遗忘不重要的数据,同时保留重要但又旧的信息。因此,ASP可以在遗忘和立即学习之间保持平衡,以构建稳定可塑性的自适应SNN来连续更改输入。我们证明了所提出的学习方法可解决灾难性的遗忘,同时相对于用于数字识别应用的常规STDP学习方法,其产生的准确性大大提高。此外,我们观察到,提出的学习模型自动编码对输入数据中相关特征的选择性注意,同时消除了背景噪声(或降噪)的影响,从而进一步提高了ASP学习的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号